Procuring expressive molecular representations underpins AI-driven molecule design and scientific discovery. The research to date mainly focuses on atom-level homogeneous molecular graphs, ignoring the rich information in subgraphs or motifs. However, it has been widely accepted that substructures play a dominant role in the identification and determination of molecular properties. To address such issues, we formulate heterogeneous molecular graphs (HMGs), and introduce Molformer to exploit both molecular motifs and 3D geometry. Specifically, we extract functional groups as motifs for small molecules and resort to the reinforcement learning to adaptively select quaternary amino acids as motifs for proteins. Then HMGs are constructed with both atom-level and motif-level nodes. To better accommodate those HMGs, we introduce a variant of Transformer named Molformer, which adopts a heterogeneous self-attention layer to distinguish the interactions between multi-level nodes. Besides, it is also coupled with a multi-scale mechanism to capture local fine-grained patterns with increasing contextual scales. An attentive farthest point sampling algorithm is also proposed to obtain the molecular representations. We validate Molformer across a few domains including quantum chemistry, physiology, and biophysics. Experiments show that Molformer outperforms state-of-the-art baselines. Our work provides a promising way to utilize informative motifs from the perspective of multi-level graph construction.


翻译:为了解决这些问题,我们制作了异质分子图(HMGs),并引入了Molfer, 以利用分子模块和3D几何方法的相互作用。具体地说,我们从功能组中提取小分子的模型,并采用强化学习适应性选择的四硝基氨酸作为蛋白质的模型。然后,HMGs用原子层面和motif级节点来构建。为了更好地容纳这些分子特性,我们引入了名为Molder的变异器变异式分子图(HMGs),该变异式自我保存层用来区分多层次节点之间的相互作用。此外,我们还利用一个多尺度机制,用适应性选择的四硝基氨酸作为蛋白质的模型学习。然后,HMGs用原子层面和motif级节点节点节点节点节点的节点来构建。为了更好地容纳这些分子特性,我们提出了一个有希望的模型的模型模型模型模型,我们从数级级的模型到数级级的模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
54+阅读 · 2021年6月30日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员