With the popularity of the recent Transformer-based models represented by BERT, GPT-3 and ChatGPT, there has been state-of-the-art performance in a range of natural language processing tasks. However, the massive computations, huge memory footprint, and thus high latency of Transformer-based models is an inevitable challenge for the cloud with high real-time requirement. To tackle the issue, we propose BBCT, a method of block-wise bit-compression for transformer without retraining. Our method achieves more fine-grained compression of the whole transformer, including embedding, matrix multiplication, GELU, softmax, layer normalization, and all the intermediate results. As a case, we compress an efficient BERT with the method of BBCT. Our benchmark test results on General Language Understanding Evaluation (GLUE) show that BBCT can achieve less than 1% accuracy drop in most tasks.


翻译:以BERT、GPT-3和ChatGPT为代表的最近以变换器为基础的模型受到欢迎,因此在一系列自然语言处理任务中出现了最先进的性能。然而,大规模计算、巨大的记忆足迹以及由此而来的变换器高潜度对于高实时要求的云层来说,是不可避免的挑战。为了解决这个问题,我们建议BBCT,这是不进行再培训的变换器的块状比特压缩方法。我们的方法使整个变换器的压缩更加精细,包括嵌入、矩阵倍增、GELU、软模、层正常化和所有中间结果。举例来说,我们用BBCT的方法压缩一个高效的变压器。我们在通用语言理解评价的基准测试结果(GLUE)显示,BCT在多数任务中可以达到不到1%的精确率下降。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员