Local-remote systems allow robots to execute complex tasks in hazardous environments such as space and nuclear power stations. However, establishing accurate positional mapping between local and remote devices can be difficult due to time delays that can compromise system performance and stability. Enhancing the synchronicity and stability of local-remote systems is vital for enabling robots to interact with environments at greater distances and under highly challenging network conditions, including time delays. We introduce an adaptive control method employing reinforcement learning to tackle the time-delayed control problem. By adjusting controller parameters in real-time, this adaptive controller compensates for stochastic delays and improves synchronicity between local and remote robotic manipulators. To improve the adaptive PD controller's performance, we devise a model-based reinforcement learning approach that effectively incorporates multi-step delays into the learning framework. Utilizing this proposed technique, the local-remote system's performance is stabilized for stochastic communication time-delays of up to 290ms. Our results demonstrate that the suggested model-based reinforcement learning method surpasses the Soft-Actor Critic and augmented state Soft-Actor Critic techniques. Access the code at: https://github.com/CAV-Research-Lab/Predictive-Model-Delay-Correction


翻译:暂无翻译

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员