Graph clustering is the task of partitioning a collection of observed networks into groups of similar networks. Here similarity means networks have a similar structure or graph topology. To this end, a model-based approach is developed, where the networks are modelled by a finite mixture model of stochastic block models. Moreover, a computationally efficient clustering algorithm is developed. The procedure is an agglomerative hierarchical algorithm that maximizes the so-called integrated classification likelihood criterion. The bottom-up algorithm consists of successive merges of clusters of networks. Those merges require a means to match block labels of two stochastic block models to overcome the label-switching problem. This problem is addressed with a new distance measure for the comparison of stochastic block models based on their graphons. The algorithm provides a cluster hierarchy in form of a dendrogram and valuable estimates of all model parameters.


翻译:图形群集是将观测到的网络汇集成类似网络组的任务。 这里相似意味着网络具有类似的结构或图示表层。 为此, 开发了一种基于模型的方法, 网络以随机区块模型的有限混合模型为模型。 此外, 开发了一种计算高效的群集算法。 程序是一种集合式的等级算法, 使所谓的综合分类概率标准最大化。 自下而上的算法由网络群集的相继合并组成。 这些合并需要一种方法来匹配两个随机区块模型的区块标签, 以克服标签切换问题。 这个问题将用新的距离测量标准来解决, 以比较基于其图形的随机区块模型。 算法提供了一种群集等级, 其形式为时速法和所有模型参数的有价值的估计。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员