The Dijkstra algorithm is a classic path planning method, which in a discrete graph space, can start from a specified source node and find the shortest path between the source node and all other nodes in the graph. However, to the best of our knowledge, there is no effective method that achieves a function similar to that of the Dijkstra's algorithm in a continuous space. In this study, an optimal path planning algorithm called convex dissection topology (CDT)-Dijkstra is developed, which can quickly compute the global optimal path from one point to all other points in a 2D continuous space. CDT-Dijkstra is mainly divided into two stages: SetInit and GetGoal. In SetInit, the algorithm can quickly obtain the optimal CDT encoding set of all the cut lines based on the initial point x_{init}. In GetGoal, the algorithm can return the global optimal path of any goal point at an extremely high speed. In this study, we propose and prove the planning principle of considering only the points on the cutlines, thus reducing the state space of the distance optimal path planning task from 2D to 1D. In addition, we propose a fast method to find the optimal path in a homogeneous class and theoretically prove the correctness of the method. Finally, by testing in a series of environments, the experimental results demonstrate that CDT-Dijkstra not only plans the optimal path from all points at once, but also has a significant advantage over advanced algorithms considering certain complex tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员