Cookies provide a state management mechanism for the web and are often used for authentication, storing a user's session ID, and replacing their credentials in subsequent requests. These ``session cookies'' are valuable targets of attacks such as Session Hijacking and Fixation that attempt to steal them and gain unauthorized access to user accounts. Multiple controls such as the Secure and HttpOnly cookie attributes restrict cookie accessibility, effectively mitigating attacks from the network or malicious websites, but often ignoring untrusted extensions within the user's browser. Extensions are third-party HTML/JavaScript add-ons with access to several privileged APIs and can run on multiple websites at once. Unfortunately, this can provide malicious/compromised extensions with unrestricted access to session cookies. In this work, we first conduct a study assessing the prevalence of extensions with these ``risky'' APIs (i.e., those enabling cookie modification and theft) and find that they are currently used by hundreds of millions of users. Motivated by this, we propose browser controls based on two new cookie attributes that protect cookies from malicious extensions: BrowserOnly and Tracked. The BrowserOnly attribute prevents accessing cookies from extensions altogether. While effective, not all cookies can be inaccessible. Cookies with the Tracked attribute remain accessible, are tied to a single browser, and record any modifications made by extensions. Thus, stolen Tracked cookies become unusable outside their original browser and servers can verify any modifications. To demonstrate these features' practicality, we implement CREAM (Cookie Restrictions for Extension Abuse Mitigation): a modified version of Chromium realizing these controls. Our evaluation indicates that CREAM controls effectively protect cookies from malicious extensions while incurring small run-time overheads.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Cookie(复数形态 Cookies)指某些网站为了辨别用户身份而储存在用户本地终端(Client Side)上的数据(通常经过加密)。定义于 RFC2109。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月24日
Arxiv
15+阅读 · 2021年6月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员