We present a numerical framework for constructing a targeted digital twin (tDT) that directly models the dynamics of quantities of interest (QoIs) in a full digital twin (DT). The proposed approach employs memory-based flow map learning (FML) to develop a data-driven model of the QoIs using short bursts of trajectory data generated through repeated executions of the full DT. This renders the construction of the FML-based tDT an entirely offline computational process. During online simulation, the learned tDT can efficiently predict and analyze the long-term dynamics of the QoIs without requiring simulations of the full DT system, thereby achieving substantial computational savings. After introducing the general numerical procedure, we demonstrate the construction and predictive capability of the tDT in a computational fluid dynamics (CFD) example: two-dimensional incompressible flow past a cylinder. The QoIs in this problem are the hydrodynamic forces exerted on the cylinder. The resulting tDTs are compact dynamical systems that evolve these forces without explicit knowledge of the underlying flow field. Numerical results show that the tDTs yield accurate long-term predictions of the forces while entirely bypassing full flow simulations.
翻译:暂无翻译