Offline reinforcement learning often requires a quality dataset that we can train a policy on. However, in many situations, it is not possible to get such a dataset, nor is it easy to train a policy to perform well in the actual environment given the offline data. We propose using data distillation to train and distill a better dataset which can then be used for training a better policy model. We show that our method is able to synthesize a dataset where a model trained on it achieves similar performance to a model trained on the full dataset or a model trained using percentile behavioral cloning. Our project site is available at https://datasetdistillation4rl.github.io . We also provide our implementation at https://github.com/ggflow123/DDRL .


翻译:离线强化学习通常需要一个高质量的数据集来训练策略。然而,在许多情况下,获取这样的数据集并不容易,同时基于离线数据训练出在实际环境中表现优异的策略也颇具挑战。我们提出利用数据蒸馏技术来训练并蒸馏出更优的数据集,进而用于训练性能更强的策略模型。实验表明,我们的方法能够合成一个数据集,使得基于该数据集训练的模型在性能上接近基于完整数据集训练的模型,或达到基于百分位数行为克隆方法训练的模型水平。项目网站位于 https://datasetdistillation4rl.github.io,相关实现代码已开源:https://github.com/ggflow123/DDRL。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员