The proliferation of IoT devices in smart cities challenges 6G networks with conflicting energy-latency requirements across heterogeneous slices. Existing approaches struggle with the energy-latency trade-off, particularly for massive scale deployments exceeding 50,000 devices km. This paper proposes an edge-aware CyberTwin framework integrating hybrid federated learning for energy-latency co-optimization in 6G network slicing. Our approach combines centralized Artificial Intelligence scheduling for latency-sensitive slices with distributed federated learning for non-critical slices, enhanced by compressive sensing-based digital twins and renewable energy-aware resource allocation. The hybrid scheduler leverages a three-tier architecture with Physical Unclonable Function (PUF) based security attestation achieving 99.7% attack detection accuracy. Comprehensive simulations demonstrate 52% energy reduction for non-real-time slices compared to Diffusion-Reinforcement Learning baselines while maintaining 0.9ms latency for URLLC applications with 99.1% SLA compliance. The framework scales to 50,000 devices km with CPU overhead below 25%, validated through NS-3 hybrid simulations across realistic smart city scenarios.


翻译:智慧城市中物联网设备的激增给6G网络带来了异构切片间能耗与延迟需求相互冲突的挑战。现有方法在能耗与延迟的权衡方面存在困难,尤其是在超过每平方公里5万台设备的大规模部署场景中。本文提出了一种边缘感知的数字孪生框架,该框架集成混合联邦学习以实现6G网络切片中的能耗-延迟协同优化。我们的方法将面向延迟敏感切片的集中式人工智能调度与面向非关键切片的分布式联邦学习相结合,并通过基于压缩感知的数字孪生及可再生能源感知的资源分配进行增强。混合调度器采用基于物理不可克隆功能(PUF)安全认证的三层架构,实现了99.7%的攻击检测准确率。综合仿真表明,与扩散-强化学习基线相比,非实时切片能耗降低52%,同时为超可靠低延迟通信(URLLC)应用保持0.9毫秒延迟,服务等级协议(SLA)合规率达99.1%。该框架可扩展至每平方公里5万台设备,CPU开销低于25%,并通过NS-3混合仿真在真实智慧城市场景中进行了验证。

0
下载
关闭预览

相关内容

智慧城市(英语:Smart City)是指利用各种信息技术或创新意念,集成城市的组成系统和服务,以提升资源运用的效率,优化城市管理和服务,以及改善市民生活质量。智慧城市把新一代信息技术充分运用在城市的各行各业之中的基于知识社会下一代创新(创新2.0)的城市信息化高级形态,实现信息化、工业化与城镇化深度融合,有助于缓解“大城市病”,提高城镇化质量,实现精细化和动态管理,并提升城市管理成效和改善市民生活质量。关于智慧城市的具体定义比较广泛,目前在国际上被广泛认同的定义是,智慧城市是新一代信息技术支撑、知识社会下一代创新(创新2.0)环境下的城市形态,强调智慧城市不仅仅是物联网、云计算等新一代信息技术的应用,更重要的是通过面向知识社会的创新2.0的方法论应用,构建用户创新、开放创新、大众创新、协同创新为特征的城市可持续创新生态。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员