Logical query answering over Knowledge Graphs (KGs) is a fundamental yet complex task. A promising approach to achieve this is to embed queries and entities jointly into the same embedding space. Research along this line suggests that using multi-modal distribution to represent answer entities is more suitable than uni-modal distribution, as a single query may contain multiple disjoint answer subsets due to the compositional nature of multi-hop queries and the varying latent semantics of relations. However, existing methods based on multi-modal distribution roughly represent each subset without capturing its accurate cardinality, or even degenerate into uni-modal distribution learning during the reasoning process due to the lack of an effective similarity measure. To better model queries with diversified answers, we propose Query2GMM for answering logical queries over knowledge graphs. In Query2GMM, we present the GMM embedding to represent each query using a univariate Gaussian Mixture Model (GMM). Each subset of a query is encoded by its cardinality, semantic center and dispersion degree, allowing for precise representation of multiple subsets. Then we design specific neural networks for each operator to handle the inherent complexity that comes with multi-modal distribution while alleviating the cascading errors. Last, we design a new similarity measure to assess the relationships between an entity and a query's multi-answer subsets, enabling effective multi-modal distribution learning for reasoning. Comprehensive experimental results show that Query2GMM outperforms the best competitor by an absolute average of $6.35\%$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员