Backscatter communication (BackCom), one of the core technologies to realize zero-power communication, is expected to be a pivotal paradigm for the next generation of the Internet of Things (IoT). However, the "strong" direct link (DL) interference (DLI) is traditionally assumed to be harmful, and generally drowns out the "weak" backscattered signals accordingly, thus deteriorating the performance of BackCom. In contrast to the previous efforts to eliminate the DLI, in this paper, we exploit the constructive interference (CI), in which the DLI contributes to the backscattered signal. To be specific, our objective is to maximize the received signal power by jointly optimizing the receive beamforming vectors and tag selection factors, which is, however, non-convex and difficult to solve due to constraints on the Kullback-Leibler (KL) divergence. In order to solve this problem, we first decompose the original problem, and then propose two algorithms to solve the sub-problem with beamforming design via a change of variables and semi-definite programming (SDP) and a greedy algorithm to solve the sub-problem with tag selection. In order to gain insight into the CI, we consider a special case with the single-antenna reader to reveal the channel angle between the backscattering link (BL) and the DL, in which the DLI will become constructive. Simulation results show that significant performance gain can always be achieved in the proposed algorithms compared with the traditional algorithms without the DL in terms of the strength of the received signal. The derived constructive channel angle for the BackCom system with the single-antenna reader is also confirmed by simulation results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员