Most large web-scale applications are now built by composing collections (from a few up to 100s or 1000s) of microservices. Operators need to decide how many resources are allocated to each microservice, and these allocations can have a large impact on application performance. Manually determining allocations that are both cost-efficient and meet performance requirements is challenging, even for experienced operators. In this paper we present AutoTune, an end-to-end tool that automatically minimizes resource utilization while maintaining good application performance.


翻译:大部分大型网络应用程序现在都是通过微型服务集集(从几到100或1000)建立起来的。操作者需要决定分配给每个微观服务的资源有多少,这些分配可以对应用性能产生很大影响。手工确定既具有成本效益又符合业绩要求的分配是困难的,即使是经验丰富的操作者也是如此。本文介绍AutoTune(AutoTune),这是一个端对端工具,在保持良好的应用性能的同时,自动最大限度地减少资源的利用。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员