We propose a general framework to construct self-normalized multiple-change-point tests with time series data. The only building block is a user-specified one-change-point detecting statistic, which covers a wide class of popular methods, including cumulative sum process, outlier-robust rank statistics and order statistics. Neither robust and consistent estimation of nuisance parameters, selection of bandwidth parameters, nor pre-specification of the number of change points is required. The finite-sample performance shows that our proposal is size-accurate, robust against misspecification of the alternative hypothesis, and more powerful than existing methods. Case studies of NASDAQ option volume and Shanghai-Hong Kong Stock Connect turnover are provided.


翻译:我们提出一个总框架,用时间序列数据构建自我标准化的多变点测试;唯一的基石是用户指定的一变点检测统计数据,该统计数据涵盖广泛的流行方法,包括累积总和过程、外部强压级统计和定购统计;不需要对骚扰参数、带宽参数的选择进行可靠和一致的估计,也不需要预先确定变更点的数目。 有限抽样表现表明,我们的提案规模准确,对替代假设的错误区分有力,比现有方法更强大。 提供了对NASDAQ选项量和上海-香港股票连接更替率的案例研究。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月16日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员