Prediction of hydrogen embrittlement requires a robust modelling approach and this will foster the safe adoption of hydrogen as a clean energy vector. A generalised computational model for hydrogen embrittlement is here presented, based on a phase field description of fracture. In combination with Part I of this work, which describes the process of hydrogen uptake and transport, this allows simulating a wide range of hydrogen transport and embrittlement phenomena. The material toughness is defined as a function of the hydrogen content and both elastic and elastic-plastic material behaviour are incorporated, enabling to capture both ductile and brittle fractures, and the transition from one to the other. The accumulation of hydrogen near a crack tip and subsequent embrittlement is numerically evaluated in a single-edge cracked plate, a boundary layer model and a 3D vessel case study, demonstrating the potential of the framework. Emphasis is placed on the numerical implementation, which is carried out in the finite element package COMSOL Multiphysics, and the models are made freely available.
翻译:暂无翻译