Recent research in both academia and industry has validated the effectiveness of provenance graph-based detection for advanced cyber attack detection and investigation. However, analyzing large-scale provenance graphs often results in substantial overhead. To improve performance, existing detection systems implement various optimization strategies. Yet, as several recent studies suggest, these strategies could lose necessary context information and be vulnerable to evasions. Designing a detection system that is efficient and robust against adversarial attacks is an open problem. We introduce Marlin, which approaches cyber attack detection through real-time provenance graph alignment.By leveraging query graphs embedded with attack knowledge, Marlin can efficiently identify entities and events within provenance graphs, embedding targeted analysis and significantly narrowing the search space. Moreover, we incorporate our graph alignment algorithm into a tag propagation-based schema to eliminate the need for storing and reprocessing raw logs. This design significantly reduces in-memory storage requirements and minimizes data processing overhead. As a result, it enables real-time graph alignment while preserving essential context information, thereby enhancing the robustness of cyber attack detection. Moreover, Marlin allows analysts to customize attack query graphs flexibly to detect extended attacks and provide interpretable detection results. We conduct experimental evaluations on two large-scale public datasets containing 257.42 GB of logs and 12 query graphs of varying sizes, covering multiple attack techniques and scenarios. The results show that Marlin can process 137K events per second while accurately identifying 120 subgraphs with 31 confirmed attacks, along with only 1 false positive, demonstrating its efficiency and accuracy in handling massive data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员