A successful commercial deployment of quantum key distribution (QKD) technologies requires integrating QKD links into existing fibers and sharing the same fiber networks with classical data traffic. To mitigate the spontaneous Raman scattering (SpRS) noise from classical data channels, several quantum/classical coexistence strategies have been developed. O-band solutions place the QKD channel in the O-band for lower SpRS noise but with the penalty of higher fiber loss and can rarely reach beyond 80 km of fiber; another method is C-band coexistence with attenuated classical channels, which sacrifices the performance of classical channels for lower SpRS noise. In this work, a time-interleaving technique is demonstrated to enable the co-propagation of quantum and classical channels in the C-band without sacrificing either performance. By embedding QKD pulses in the gaps between classical data frames, the quantum channel is isolated from SpRS noise in both wavelength and time domains. C-band co-propagation of a polarization-encoding decoy-state BB84 QKD channel with a 100 Gb/s QPSK channel is experimentally demonstrated with quantum bit error rate (QBER) of 1.12%, 2.04%, and 3.81% and secure key rates (SKR) of 39.5 kb/s, 6.35 kb/s, and 128 b/s over 20, 50, and 100 km fibers, respectively. These results were achieved with the presence of classical launch power up to 10 dBm, which is at least one order of magnitude higher than reported works. We also demonstrated the co-propagation of a QKD channel with eight classical channels with total launch power up to 18-dBm (9-dBm per channel), which is the highest power of classical channels reported in C-band coexistence works.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月24日
Arxiv
0+阅读 · 2023年11月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员