We develop a new approach for approximating large independent sets when the input graph is a one-sided spectral expander - that is, the uniform random walk matrix of the graph has its second eigenvalue bounded away from 1. Consequently, we obtain a polynomial time algorithm to find linear-sized independent sets in one-sided expanders that are almost $3$-colorable or are promised to contain an independent set of size $(1/2-\epsilon)n$. Our second result above can be refined to require only a weaker vertex expansion property with an efficient certificate. In a surprising contrast to our algorithmic result, we observe that the analogous task of finding a linear-sized independent set in almost $4$-colorable one-sided expanders (even when the second eigenvalue is $o_n(1)$) is NP-hard, assuming the Unique Games Conjecture. All prior algorithms that beat the worst-case guarantees for this problem rely on bottom eigenspace enumeration techniques (following the classical spectral methods of Alon and Kahale) and require two-sided expansion, meaning a bounded number of negative eigenvalues of magnitude $\Omega(1)$. Such techniques naturally extend to almost $k$-colorable graphs for any constant $k$, in contrast to analogous guarantees on one-sided expanders, which are Unique Games-hard to achieve for $k \geq 4$. Our rounding builds on the method of simulating multiple samples from a pseudo-distribution introduced by Bafna et. al. for rounding Unique Games instances. The key to our analysis is a new clustering property of large independent sets in expanding graphs - every large independent set has a larger-than-expected intersection with some member of a small list - and its formalization in the low-degree sum-of-squares proof system.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月19日
Arxiv
1+阅读 · 2024年12月19日
Arxiv
1+阅读 · 2024年12月18日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
1+阅读 · 2024年12月19日
Arxiv
1+阅读 · 2024年12月19日
Arxiv
1+阅读 · 2024年12月18日
Arxiv
31+阅读 · 2021年6月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员