Despite their groundbreaking performance, autonomous agents can misbehave when training and environmental conditions become inconsistent, with minor mismatches leading to undesirable behaviors or even catastrophic failures. Robustness towards these training-environment ambiguities is a core requirement for intelligent agents and its fulfillment is a long-standing challenge towards their real-world deployments. Here, we introduce a Distributionally Robust Free Energy model (DR-FREE) that instills this core property by design. Combining a robust extension of the free energy principle with a resolution engine, DR-FREE wires robustness into the agent decision-making mechanisms. Across benchmark experiments, DR-FREE enables the agents to complete the task even when, in contrast, state-of-the-art models fail. This milestone may inspire both deployments in multi-agent settings and, at a perhaps deeper level, the quest for an explanation of how natural agents -- with little or no training -- survive in capricious environments.


翻译:尽管自主智能体在性能上取得了突破性进展,但当训练条件与环境条件不一致时,它们可能出现行为异常,微小的失配即可导致不良行为甚至灾难性故障。对训练-环境模糊性的鲁棒性是智能体的核心需求,实现这一需求是其实际部署中长期面临的挑战。本文提出了一种分布鲁棒自由能模型(DR-FREE),该模型通过设计内嵌了这一核心特性。DR-FREE将自由能原理的鲁棒性扩展与求解引擎相结合,将鲁棒性融入智能体的决策机制中。在基准实验中,DR-FREE使智能体能够在任务中持续运作,而相比之下,现有最先进模型则会失败。这一里程碑成果可能激发多智能体场景中的实际部署,并在更深的层面上,推动对自然智能体——在极少或无需训练的情况下——如何在多变环境中存续的解释性探索。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员