In this thesis, we develop the theory of bifibrations of polycategories. We start by studying how to express certain categorical structures as universal properties by generalising the shape of morphism. We call this phenomenon representability and look at different variations, namely the correspondence between representable multicategories and monoidal categories, birepresentable polycategories and $\ast$-autonomous categories, and representable virtual double categories and double categories. We then move to introduce (bi)fibrations for these structures. We show that it generalises representability in the sense that these structures are (bi)representable when they are (bi)fibred over the terminal one. We show how to use this theory to lift models of logic to more refined ones. In particular, we illustrate it by lifting the compact closed structure of the category of finite dimensional vector spaces and linear maps to the (non-compact) $\ast$-autonomous structure of the category of finite dimensional Banach spaces and contractive maps by passing to their respective polycategories. We also give an operational reading of this example, where polylinear maps correspond to operations between systems that can act on their inputs and whose outputs can be measured/probed and where norms correspond to properties of the systems that are preserved by the operations. Finally, we recall the B\'enabou-Grothendieck correspondence linking fibrations to indexed categories. We show how the B-G construction can be defined as a pullback of virtual double categories and we make use of fibrational properties of vdcs to get properties of this pullback. Then we provide a polycategorical version of the B-G correspondence.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月8日
Arxiv
0+阅读 · 2023年7月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员