Inspired by the Lottery Ticket Hypothesis (LTH), which highlights the existence of efficient subnetworks within larger, dense networks, a high-performing Winning Subnetwork (WSN) in terms of task performance under appropriate sparsity conditions is considered for various continual learning tasks. It leverages pre-existing weights from dense networks to achieve efficient learning in Task Incremental Learning (TIL) and Task-agnostic Incremental Learning (TaIL) scenarios. In Few-Shot Class Incremental Learning (FSCIL), a variation of WSN referred to as the Soft subnetwork (SoftNet) is designed to prevent overfitting when the data samples are scarce. Furthermore, the sparse reuse of WSN weights is considered for Video Incremental Learning (VIL). The use of Fourier Subneural Operator (FSO) within WSN is considered. It enables compact encoding of videos and identifies reusable subnetworks across varying bandwidths. We have integrated FSO into different architectural frameworks for continual learning, including VIL, TIL, and FSCIL. Our comprehensive experiments demonstrate FSO's effectiveness, significantly improving task performance at various convolutional representational levels. Specifically, FSO enhances higher-layer performance in TIL and FSCIL and lower-layer performance in VIL.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员