For this paper, a prediction study of cloud computing energy consumption was conducted by optimising the data regression algorithm based on the horned lizard optimisation algorithm for Convolutional Neural Networks-Bi-Directional Gated Recurrent Units. Firstly, through Spearman correlation analysis of CPU, usage, memory usage, network traffic, power consumption, number of instructions executed, execution time and energy efficiency, we found that power consumption has the highest degree of positive correlation with energy efficiency, while CPU usage has the highest degree of negative correlation with energy efficiency. In our experiments, we introduced a random forest model and an optimisation model based on the horned lizard optimisation algorithm for testing, and the results show that the optimisation algorithm has better prediction results compared to the random forest model. Specifically, the mean square error (MSE) of the optimisation algorithm is 0.01 smaller than that of the random forest model, and the mean absolute error (MAE) is 0.01 smaller than that of the random forest.3 The results of the combined metrics show that the optimisation algorithm performs more accurately and reliably in predicting energy efficiency. This research result provides new ideas and methods to improve the energy efficiency of cloud computing systems. This research not only expands the scope of application in the field of cloud computing, but also provides a strong support for improving the energy use efficiency of the system.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员