Gesture recognition on wearable devices is extensively applied in human-computer interaction. Electromyography (EMG) has been used in many gesture recognition systems for its rapid perception of muscle signals. However, analyzing EMG signals on devices, like smart wristbands, usually needs inference models to have high performances, such as low inference latency, low power consumption, and low memory occupation. Therefore, this paper proposes an improved spiking neural network (SNN) to achieve these goals. We propose an adaptive multi-delta coding as a spiking coding method to improve recognition accuracy. We propose two additive solvers for SNN, which can reduce inference energy consumption and amount of parameters significantly, and improve the robustness of temporal differences. In addition, we propose a linear action detection method TAD-LIF, which is suitable for SNNs. TAD-LIF is an improved LIF neuron that can detect transient-state gestures quickly and accurately. We collected two datasets from 20 subjects including 6 micro gestures. The collection devices are two designed lightweight consumer-level sEMG wristbands (3 and 8 electrode channels respectively). Compared to CNN, FCN, and normal SNN-based methods, the proposed SNN has higher recognition accuracy. The accuracy of the proposed SNN is 83.85% and 93.52% on the two datasets respectively. In addition, the inference latency of the proposed SNN is about 1% of CNN, the power consumption is about 0.1% of CNN, and the memory occupation is about 20% of CNN. The proposed methods can be used for precise, high-speed, and low-power micro-gesture recognition tasks, and are suitable for consumer-level intelligent wearable devices, which is a general way to achieve ubiquitous computing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年2月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员