Contention resolution addresses the problem of coordinating access to a shared channel. Time proceeds in slots, and a packet transmission can be made in any slot. A packet is successfully sent if no other packet is also transmitted during that slot. If two or more packets are sent in the same slot, then none of these transmissions succeed. Listening during a slot gives ternary feedback, indicating if that slot had (0) silence, (1) a successful transmission, or (2+) noise. No other feedback is available. Packets are (adversarially) injected into the system over time. A packet departs the system once it is successful. The goal is to send all packets while optimizing throughput, which is roughly the fraction of successful slots. Most prior algorithms with constant throughput require a short feedback loop, in the sense that a packet's sending probability in slot t+1 is fully determined by its internal state at slot t and the channel feedback at slot t. An open question is whether these short feedback loops are necessary; that is, how often must listening and updating occur in order to achieve constant throughput? This question addresses energy efficiency, since both listening and sending consume significant energy. The channel can also suffer adversarial noise ("jamming"), which causes any listener to hear noise, even when no packets are sent. How does jamming affect our goal of long feedback loops/energy efficiency? Connecting these questions, we ask: what does a contention-resolution algorithm have to sacrifice to reduce channel accesses? Must we give up on constant throughput or robustness to noise? Here, we show that we need not concede anything. Suppose there are N packets and J jammed slots, where the input is determined by an adaptive adversary. We give an algorithm that, with high probability in N+J, has constant throughput and polylog(N+J) channel accesses per packet.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员