Session-based recommendation which has been witnessed a booming interest recently, focuses on predicting a user's next interested item(s) based on an anonymous session. Most existing studies adopt complex deep learning techniques (e.g., graph neural networks) for effective session-based recommendation. However, they merely address co-occurrence between items, but fail to well distinguish causality and correlation relationship. Considering the varied interpretations and characteristics of causality and correlation relationship between items, in this study, we propose a novel method denoted as CGSR by jointly modeling causality and correlation relationship between items. In particular, we construct cause, effect and correlation graphs from sessions by simultaneously considering the false causality problem. We further design a graph neural network-based method for session-based recommendation. To conclude, we strive to explore the relationship between items from specific ``causality" (directed) and ``correlation" (undirected) perspectives. Extensive experiments on three datasets show that our model outperforms other state-of-the-art methods in terms of recommendation accuracy. Moreover, we further propose an explainable framework on CGSR, and demonstrate the explainability of our model via case studies on Amazon dataset.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员