It is known for many algorithmic problems that if a tree decomposition of width $t$ is given in the input, then the problem can be solved with exponential dependence on $t$. A line of research by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many cases known algorithms achieve the best possible exponential dependence on $t$, assuming the SETH. The main message of our paper is showing that the same lower bounds can be obtained in a more restricted setting: a graph consisting of a block of $t$ vertices connected to components of constant size already has the same hardness as a general tree decomposition of width $t$. Formally, a $(\sigma,\delta)$-hub is a set $Q$ of vertices such that every component of $Q$ has size at most $\sigma$ and is adjacent to at most $\delta$ vertices of $Q$. We show that $\bullet$ For every $\epsilon> 0$, there are $\sigma,\delta> 0$ such that Independent Set/Vertex Cover cannot be solved in time $(2-\epsilon)^p\cdot n$, even if a $(\sigma,\delta)$-hub of size $p$ is given in the input, assuming the SETH. This matches the earlier tight lower bounds parameterized by the width of the tree decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut, $q$-Coloring, and edge/vertex deletions versions of $q$-Coloring. $\bullet$ For every $\epsilon>0$, there are $\sigma,\delta> 0$ such that Triangle-Partition cannot be solved in time $(2-\epsilon)^p\cdot n$, even if a $(\sigma,\delta)$-hub of size $p$ is given in the input, assuming the Set Cover Conjecture (SCC). In fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be proved assuming the SETH. Our results reveal that, for many problems, the research on lower bounds on the dependence on tree width was never really about tree decompositions, but the real source of hardness comes from a much simpler structure.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员