We revisit 1-bit gradient compression through the lens of mutual-information differential privacy (MI-DP). Building on signSGD, we propose FERRET--Fast and Effective Restricted Release for Ethical Training--which transmits at most one sign bit per parameter group with Bernoulli masking. Theory: We prove each fired group leaks at most ln 2 nats; after subsampling with rate s, the total privacy loss of G groups trained for T steps with firing probability p is epsilon = G * T * s * p * ln 2. Thus FERRET achieves MI-DP for epsilon in [0.1, 2] without additive noise. Practice: We evaluate three granularities--FERRET-MAX (finest), FERRET-EIGHTH (medium), and FERRET-2 (coarsest)--on five LLMs (137M-1.8B parameters) against DPSGD and Non-DP baselines. All methods trained for 1, 3, and 5 epochs. Utility: Across all settings, FERRET-MAX/EIGHTH beat DPSGD's perplexity. At epsilon=0.5, 5 epochs: FERRET-EIGHTH achieves 3.98 perplexity vs DPSGD's 11.61 (2.9x better), within 23% of Non-DP (3.25). Privacy: MI-AUC stays at chance for FERRET-MAX/EIGHTH (~0.51), matching DPSGD vs Non-DP's 0.76-0.99. FERRET-2 shows higher leakage (~0.55) due to lower headroom. Efficiency: Stricter budgets fire fewer signs, so FERRET uses 19-33% of DPSGD's training time and only 34-36% of Non-DP training time. Take-away: Sign-based MI-DP gets closer to achieving all three qualities of the privacy, utility, performance trilemma: FERRET trains up to 5x faster, achieves 3x lower perplexity compared to DPSGD and 1.2x greater than Non-DP, all while providing formal, mathematically provable privacy guarantees using zero additive noise. The results also show that, in certain instances, masked 1-bit updates can match non-private training utility while safeguarding data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员