Bipartite graphs model the relationship between two disjoint sets of objects. They have a wide range of applications and are often visualized as a 2-layered drawing, where each set of objects is visualized as a set of vertices (points) on one of the two parallel horizontal lines and the relationships are represented by edges (simple curves) between the two lines connecting the corresponding vertices. One of the common objectives in such drawings is to minimize the number of crossings this, however, is computationally expensive and may still result in drawings with so many crossings that they affect the readability of the drawing. We consider a recent approach to remove crossings in such visualizations by splitting vertices, where the goal is to find the minimum number of vertices to be split to obtain a planar drawing. We show that determining whether a planar drawing exists after splitting at most $k$ vertices is fixed parameter tractable in $k$.


翻译:两组脱节天体之间的关系模式。 两组天体具有广泛的应用范围,通常可视化为两层图纸,每组天体在两条平行水平线中的一条线上可视化为一组脊椎(点),其关系由连接相应脊椎的两条线之间的边缘(简单曲线)代表。这种图纸的共同目标之一是尽量减少跨线的数量,然而,这是计算成本很高的,而且仍然可能导致图纸多处交叉,从而影响图纸的可读性。我们考虑最近的一种办法,即通过分割脊椎来去除这些可视化的交叉点,目的是找到最小的脊椎数,以获得平面图。我们表明,确定平面分后是否存在平面图,最多为$k$的顶点是固定的参数,可以美元计。

0
下载
关闭预览

相关内容

FPT:International Conference on Field-Programmable Technology。 Explanation:现场可编程技术国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/fpt/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月13日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员