A numerical framework is proposed for identifying partial differential equations (PDEs) governing dynamical systems directly from their observation data using Chebyshev polynomial approximation. In contrast to data-driven approaches such as dynamic mode decomposition (DMD), which approximate the Koopman operator without a clear connection to differential operators, the proposed method constructs finite-dimensional Koopman matrices by projecting the dynamics onto a Chebyshev basis, thereby capturing both differential and nonlinear terms. This establishes a numerical link between the Koopman and differential operators. Numerical experiments on benchmark dynamical systems confirm the accuracy and efficiency of the approach, underscoring its potential for interpretable operator learning. The framework also lays a foundation for future integration with symbolic regression, enabling the construction of explicit mathematical models directly from data.


翻译:本文提出了一种数值框架,利用切比雪夫多项式近似直接从观测数据中识别控制动力系统的偏微分方程(PDEs)。与动态模态分解(DMD)等数据驱动方法不同(这些方法近似Koopman算子但未明确关联微分算子),本方法通过将动力学投影到切比雪夫基上构建有限维Koopman矩阵,从而同时捕捉微分项和非线性项。这建立了Koopman算子与微分算子之间的数值关联。在基准动力系统上的数值实验验证了该方法的准确性与效率,凸显了其在可解释算子学习方面的潜力。该框架还为未来与符号回归的集成奠定了基础,使得能够直接从数据构建显式数学模型。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员