Software systems are increasingly relying on Artificial Intelligence (AI) and Machine Learning (ML) components. The emerging popularity of AI techniques in various application domains attracts malicious actors and adversaries. Therefore, the developers of AI-enabled software systems need to take into account various novel cyber-attacks and vulnerabilities that these systems may be susceptible to. This paper presents a framework to characterize attacks and weaknesses associated with AI-enabled systems and provide mitigation techniques and defense strategies. This framework aims to support software designers in taking proactive measures in developing AI-enabled software, understanding the attack surface of such systems, and developing products that are resilient to various emerging attacks associated with ML. The developed framework covers a broad spectrum of attacks, mitigation techniques, and defensive and offensive tools. In this paper, we demonstrate the framework architecture and its major components, describe their attributes, and discuss the long-term goals of this research.


翻译:软件系统日益依赖人工智能(AI)和机器学习(ML)组件。各种应用领域对AI技术的日益普及吸引了恶意行为者和对手。因此,AI支持的软件系统的开发者需要考虑到这些系统可能容易受到的各种新颖的网络攻击和脆弱性。本文件提供了一个框架,用以说明与AI支持的系统有关的攻击和弱点,并提供缓解技术和防御战略。这一框架旨在支持软件设计者采取主动措施开发AI支持的软件,了解这些系统的攻击表面,开发能够抵御与ML相关的各种新攻击的产品。开发的框架涵盖广泛的攻击、减缓技术以及防御和攻击工具。在本文件中,我们展示了框架结构及其主要组成部分,描述其属性,并讨论这一研究的长期目标。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员