In this paper, we prove an asymptotic expansion for the ratio of the Dirichlet density to the multivariate normal density with the same mean and covariance matrix. The expansion is then used to derive an upper bound on the total variation between the corresponding probability measures. Other potential applications are briefly discussed.


翻译:在本文中,我们用相同的中值和共变量矩阵,证明德里奇特密度与多变量正常密度之比的无症状扩张。然后,扩展用于获得相应概率计量之间总变化的上限。将简要讨论其他潜在应用。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月23日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员