The multi-criteria (MC) recommender system, which leverages MC rating information in a wide range of e-commerce areas, is ubiquitous nowadays. Surprisingly, although graph neural networks (GNNs) have been widely applied to develop various recommender systems due to GNN's high expressive capability in learning graph representations, it has been still unexplored how to design MC recommender systems with GNNs. In light of this, we make the first attempt towards designing a GNN-aided MC recommender system. Specifically, rather than straightforwardly adopting existing GNN-based recommendation methods, we devise a novel criteria preference-aware light graph convolution CPA-LGC method, which is capable of precisely capturing the criteria preference of users as well as the collaborative signal in complex high-order connectivities. To this end, we first construct an MC expansion graph that transforms user--item MC ratings into an expanded bipartite graph to potentially learn from the collaborative signal in MC ratings. Next, to strengthen the capability of criteria preference awareness, CPA-LGC incorporates newly characterized embeddings, including user-specific criteria-preference embeddings and item-specific criterion embeddings, into our graph convolution model. Through comprehensive evaluations using four real-world datasets, we demonstrate (a) the superiority over benchmark MC recommendation methods and benchmark recommendation methods using GNNs with tremendous gains, (b) the effectiveness of core components in CPA-LGC, and (c) the computational efficiency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
51+阅读 · 2022年10月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员