We revisit two well-studied problems, Bounded Degree Vertex Deletion and Defective Coloring, where the input is a graph $G$ and a target degree $\Delta$ and we are asked either to edit or partition the graph so that the maximum degree becomes bounded by $\Delta$. Both are known to be parameterized intractable for treewidth. We revisit the parameterization by treewidth, as well as several related parameters and present a more fine-grained picture of the complexity of both problems. Both admit straightforward DP algorithms with table sizes $(\Delta+2)^\mathrm{tw}$ and $(\chi_\mathrm{d}(\Delta+1))^{\mathrm{tw}}$ respectively, where tw is the input graph's treewidth and $\chi_\mathrm{d}$ the number of available colors. We show that both algorithms are optimal under SETH, even if we replace treewidth by pathwidth. Along the way, we also obtain an algorithm for Defective Coloring with complexity quasi-linear in the table size, thus settling the complexity of both problems for these parameters. We then consider the more restricted parameter tree-depth, and bridge the gap left by known lower bounds, by showing that neither problem can be solved in time $n^{o(\mathrm{td})}$ under ETH. In order to do so, we employ a recursive low tree-depth construction that may be of independent interest. Finally, we show that for both problems, an $\mathrm{vc}^{o(\mathrm{vc})}$ algorithm would violate ETH, thus already known algorithms are optimal. Our proof relies on a new application of the technique of $d$-detecting families introduced by Bonamy et al. Our results, although mostly negative in nature, paint a clear picture regarding the complexity of both problems in the landscape of parameterized complexity, since in all cases we provide essentially matching upper and lower bounds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员