Lipschitz constant is a fundamental property in certified robustness, as smaller values imply robustness to adversarial examples when a model is confident in its prediction. However, identifying the worst-case adversarial examples is known to be an NP-complete problem. Although over-approximation methods have shown success in neural network verification to address this challenge, reducing approximation errors remains a significant obstacle. Furthermore, these approximation errors hinder the ability to obtain tight local Lipschitz constants, which are crucial for certified robustness. Originally, grafting linearity into non-linear activation functions was proposed to reduce the number of unstable neurons, enabling scalable and complete verification. However, no prior theoretical analysis has explained how linearity grafting improves certified robustness. We instead consider linearity grafting primarily as a means of eliminating approximation errors rather than reducing the number of unstable neurons, since linear functions do not require relaxation. In this paper, we provide two theoretical contributions: 1) why linearity grafting improves certified robustness through the lens of the $l_\infty$ local Lipschitz constant, and 2) grafting linearity into non-linear activation functions, the dominant source of approximation errors, yields a tighter local Lipschitz constant. Based on these theoretical contributions, we propose a Lipschitz-aware linearity grafting method that removes dominant approximation errors, which are crucial for tightening the local Lipschitz constant, thereby improving certified robustness, even without certified training. Our extensive experiments demonstrate that grafting linearity into these influential activations tightens the $l_\infty$ local Lipschitz constant and enhances certified robustness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月4日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员