We study set selection problems where the weights are uncertain. Instead of its exact weight, only an uncertainty interval containing its true weight is available for each element. In some cases, some solutions are universally optimal; i.e., they are optimal for every weight that lies within the uncertainty intervals. However, it may be that no universal optimal solution exists, unless we are revealed additional information on the precise values of some elements. In the minimum cost admissible query problem, we are tasked to (non-adaptively) find a minimum-cost subset of elements that, no matter how they are revealed, guarantee the existence of a universally optimal solution. We introduce thresholds under uncertainty to analyze problems of minimum cost admissible queries. Roughly speaking, for every element e, there is a threshold for its weight, below which e is included in all optimal solutions and a second threshold above which e is excluded from all optimal solutions. We show that computing thresholds and finding minimum cost admissible queries are essentially equivalent problems. Thus, the analysis of the minimum admissible query problem reduces to the problem of computing thresholds. We provide efficient algorithms for computing thresholds in the settings of minimum spanning trees, matroids, and matchings in trees; and NP-hardness results in the settings of s-t shortest paths and bipartite matching. By making use of the equivalence between the two problems these results translate into efficient algorithms for minimum cost admissible queries in the settings of minimum spanning trees, matroids, and matchings in trees; and NP-hardness results in the settings of s-t shortest paths and bipartite matching.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员