Imitation learning traditionally requires complete state-action demonstrations from optimal or near-optimal experts. These requirements severely limit practical applicability, as many real-world scenarios provide only state observations without corresponding actions and expert performance is often suboptimal. In this paper we introduce a deep implicit imitation reinforcement learning framework that addresses both limitations by combining deep reinforcement learning with implicit imitation learning from observation-only datasets. Our main algorithm, Deep Implicit Imitation Q-Network (DIIQN), employs an action inference mechanism that reconstructs expert actions through online exploration and integrates a dynamic confidence mechanism that adaptively balances expert-guided and self-directed learning. This enables the agent to leverage expert guidance for accelerated training while maintaining capacity to surpass suboptimal expert performance. We further extend our framework with a Heterogeneous Actions DIIQN (HA-DIIQN) algorithm to tackle scenarios where expert and agent possess different action sets, a challenge previously unaddressed in the implicit imitation learning literature. HA-DIIQN introduces an infeasibility detection mechanism and a bridging procedure identifying alternative pathways connecting agent capabilities to expert guidance when direct action replication is impossible. Our experimental results demonstrate that DIIQN achieves up to 130% higher episodic returns compared to standard DQN, while consistently outperforming existing implicit imitation methods that cannot exceed expert performance. In heterogeneous action settings, HA-DIIQN learns up to 64% faster than baselines, leveraging expert datasets unusable by conventional approaches. Extensive parameter sensitivity analysis reveals the framework's robustness across varying dataset sizes and hyperparameter configurations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员