During the last decade, wireless data services have had an incredible impact on people's lives in ways we could never have imagined. The number of mobile devices has increased exponentially and data traffic has almost doubled every year. Undoubtedly, the rate of growth will continue to be rapid with the explosive increase in demands for data rates, latency, massive connectivity, network reliability, and energy efficiency. In order to manage this level of growth and meet these requirements, the fifth-generation (5G) mobile communications network is envisioned as a revolutionary advancement combining various improvements to previous mobile generation networks and new technologies, including the use of millimeter wavebands (mm-wave), massive multiple-input multipleoutput (mMIMO) multi-beam antennas, network densification, dynamic Time Division Duplex (TDD) transmission, and new waveforms with mixed numerologies. New revolutionary features including terahertz (THz) communications and the integration of Non-Terrestrial Networks (NTN) can further improve the performance and signal quality for future 6G networks. However, despite the inevitable benefits of all these key technologies, the heterogeneous and ultra-flexible structure of the 5G and beyond network brings non-orthogonality into the system and generates significant interference that needs to be handled carefully. Therefore, it is essential to design effective interference management schemes to mitigate severe and sometimes unpredictable interference in mobile networks. In this paper, we provide a comprehensive review of interference management in 5G and Beyond networks and discuss its future evolution. We start with a unified classification and a detailed explanation of the different types of interference and continue by presenting our taxonomy of existing interference management approaches. Then, after explaining interference measurement reports and signaling, we provide for each type of interference identified, an in-depth literature review and technical discussion of appropriate management schemes. We finish by discussing the main interference challenges that will be encountered in future 6G networks and by presenting insights on the suggested new interference management approaches, including useful guidelines for an AI-based solution. This review will provide a first-hand guide to the industry in determining the most relevant technology for interference management, and will also allow for consideration of future challenges and research directions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
49+阅读 · 2021年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员