In this work, we present the first finite-time analysis of the Q-learning algorithm under time-varying learning policies (i.e., on-policy sampling) with minimal assumptions -- specifically, assuming only the existence of a policy that induces an irreducible Markov chain over the state space. We establish a last-iterate convergence rate for $\mathbb{E}[\|Q_k - Q^*\|_\infty^2]$, implying a sample complexity of order $O(1/\epsilon^2)$ for achieving $\mathbb{E}[\|Q_k - Q^*\|_\infty] \le \epsilon$, matching that of off-policy Q-learning but with a worse dependence on exploration-related parameters. We also derive an explicit rate for $\mathbb{E}[\|Q^{\pi_k} - Q^*\|_\infty^2]$, where $\pi_k$ is the learning policy at iteration $k$. These results reveal that on-policy Q-learning exhibits weaker exploration than its off-policy counterpart but enjoys an exploitation advantage, as its policy converges to an optimal one rather than remaining fixed. Numerical simulations corroborate our theory. Technically, the combination of time-varying learning policies (which induce rapidly time-inhomogeneous Markovian noise) and the minimal assumption on exploration presents significant analytical challenges. To address these challenges, we employ a refined approach that leverages the Poisson equation to decompose the Markovian noise corresponding to the lazy transition matrix into a martingale-difference term and residual terms. To control the residual terms under time inhomogeneity, we perform a sensitivity analysis of the Poisson equation solution with respect to both the Q-function estimate and the learning policy. These tools may further facilitate the analysis of general reinforcement learning algorithms with rapidly time-varying learning policies -- such as single-timescale actor--critic methods and learning-in-games algorithms -- and are of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
A Survey on Bayesian Deep Learning
Arxiv
64+阅读 · 2020年7月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员