The present work introduces curvature-based rejection sampling (CURS). This is a method for sampling from a general class of probability densities defined on Riemannian manifolds. It can be used to sample from any probability density which ``depends only on distance". The idea is to combine the statistical principle of rejection sampling with the geometric principle of volume comparison. CURS is an exact sampling method and (assuming the underlying Riemannian manifold satisfies certain technical conditions) it has a particularly moderate computational cost. The aim of the present work is to show that there are many applications where CURS should be the user's method of choice for dealing with relatively low-dimensional scenarios.


翻译:本文提出了一种基于曲率的拒绝采样方法(CURS)。该方法适用于在黎曼流形上定义的一类广泛概率密度分布中进行采样,可用于从任何“仅依赖于距离”的概率密度中抽取样本。其核心思想是将拒绝采样的统计原理与体积比较的几何原理相结合。CURS是一种精确采样方法,且(在假设基础黎曼流形满足特定技术条件的前提下)具有相对较低的计算成本。本文旨在证明,在处理相对低维场景时,CURS应成为用户在众多应用中的首选方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月26日
Arxiv
0+阅读 · 2020年12月8日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员