The deployment of facial recognition systems has created an ethical dilemma: achieving high accuracy requires massive datasets of real faces collected without consent, leading to dataset retractions and potential legal liabilities under regulations like GDPR. While synthetic facial data presents a promising privacy-preserving alternative, the field lacks comprehensive empirical evidence of its viability. This study addresses this critical gap through extensive evaluation of synthetic facial recognition datasets. We present a systematic literature review identifying 25 synthetic facial recognition datasets (2018-2025), combined with rigorous experimental validation. Our methodology examines seven key requirements for privacy-preserving synthetic data: identity leakage prevention, intra-class variability, identity separability, dataset scale, ethical data sourcing, bias mitigation, and benchmark reliability. Through experiments involving over 10 million synthetic samples, extended by a comparison of results reported on five standard benchmarks, we provide the first comprehensive empirical assessment of synthetic data's capability to replace real datasets. Best-performing synthetic datasets (VariFace, VIGFace) achieve recognition accuracies of 95.67% and 94.91% respectively, surpassing established real datasets including CASIA-WebFace (94.70%). While those images remain private, publicly available alternatives Vec2Face (93.52%) and CemiFace (93.22%) come close behind. Our findings reveal that they ensure proper intra-class variability while maintaining identity separability. Demographic bias analysis shows that, even though synthetic data inherits limited biases, it offers unprecedented control for bias mitigation through generation parameters. These results establish synthetic facial data as a scientifically viable and ethically imperative alternative for facial recognition research.
翻译:暂无翻译