The inconsistency of pairwise comparisons remains difficult to interpret in the absence of acceptability thresholds. The popular 10% cut-off rule proposed by Saaty has recently been applied to incomplete pairwise comparison matrices, which contain some unknown comparisons. This paper revises these inconsistency thresholds: we uncover that they depend not only on the size of the matrix and the number of missing entries, but also on the undirected graph whose edges represent the known pairwise comparisons. Therefore, using our exact thresholds is especially important if the filling in patterns coincide for a large number of matrices, as has been recommended in the literature. The strong association between the new threshold values and the spectral radius of the representing graph is also demonstrated. Our results can be integrated into software to continuously monitor inconsistency during the collection of pairwise comparisons and immediately detect potential errors.


翻译:在缺乏可接受性阈值的情况下,成对比较的不一致性仍难以解释。Saaty提出的流行10%截断规则最近被应用于包含未知比较项的不完全成对比较矩阵。本文重新审视这些不一致性阈值:我们发现它们不仅取决于矩阵规模和缺失条目数量,还取决于以边表示已知成对比较的无向图结构。因此,若大量矩阵的填充模式符合文献建议,采用我们提出的精确阈值尤为重要。研究还证明了新阈值与表示图谱半径之间的强关联性。我们的成果可集成至软件中,用于在成对比较数据收集过程中持续监测不一致性,并即时检测潜在错误。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员