Nowadays, organizations collect vast quantities of sensitive information in `Enterprise Resource Planning' (ERP) systems, such as accounting relevant transactions, customer master data, or strategic sales price information. The leakage of such information poses a severe threat for companies as the number of incidents and the reputational damage to those experiencing them continue to increase. At the same time, discoveries in deep learning research revealed that machine learning models could be maliciously misused to create new attack vectors. Understanding the nature of such attacks becomes increasingly important for the (internal) audit and fraud examination practice. The creation of such an awareness holds in particular for the fraudulent data leakage using deep learning-based steganographic techniques that might remain undetected by state-of-the-art `Computer Assisted Audit Techniques' (CAATs). In this work, we introduce a real-world `threat model' designed to leak sensitive accounting data. In addition, we show that a deep steganographic process, constituted by three neural networks, can be trained to hide such data in unobtrusive `day-to-day' images. Finally, we provide qualitative and quantitative evaluations on two publicly available real-world payment datasets.


翻译:目前,各组织在“企业资源规划”(ERP)系统中收集了大量敏感信息,例如会计相关交易、客户主数据或战略销售价格信息。这种信息的泄漏对公司构成严重威胁,因为事件数量和经历这些事件的人的名誉损害继续增加。与此同时,深层学习研究发现,机器学习模式可能被恶意滥用以创造新的攻击矢量。了解这种攻击的性质对于(内部)审计和欺诈审查做法越来越重要。建立这种认识特别有助于利用深层学习基础的精密视觉技术对数据泄漏进行欺诈,而这些技术可能仍然无法被最先进的“计算机辅助审计技术”(CAATs)所察觉。在这项工作中,我们采用了一种真实世界的“威胁模型”,旨在泄露敏感的会计数据。此外,我们表明,由三个神经网络构成的深层次的扫描过程,可以用来将这类数据隐藏在非侵入性的`日常'图像中。最后,我们提供两种公开现实支付数据的定性和定量评价。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年2月17日
3D Deep Learning on Medical Images: A Review
Arxiv
13+阅读 · 2020年4月1日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
相关论文
Top
微信扫码咨询专知VIP会员