Markov Chain Monte Carlo (MCMC) excels at sampling complex posteriors but traditionally lags behind nested sampling in accurate evidence estimation, which is crucial for model comparison in astrophysical problems. We introduce reddemcee, an Adaptive Parallel Tempering Ensemble Sampler, aiming to close this gap by simultaneously presenting next-generation automated temperature-ladder adaptation techniques and robust, low-bias evidence estimators. reddemcee couples an affine-invariant stretch move with five interchangeable ladder-adaptation objectives, Uniform Swap Acceptance Rate, Swap Mean Distance, Gaussian-Area Overlap, Small Gaussian Gap, and Equalised Thermodynamic Length, implemented through a common differential update rule. Three evidence estimators are provided: Curvature-aware Thermodynamic Integration (TI+), Geometric-Bridge Stepping Stones (SS+), and a novel Hybrid algorithm that blends both approaches (H+). Performance and accuracy are benchmarked on n-dimensional Gaussian Shells, Gaussian Egg-box, Rosenbrock Functions, and exoplanet radial-velocity time-series of HD 20794. Across Shells up to 15 dimensions, reddemcee presents roughly 7 times the effective sampling speed of the best dynamic nested sampling configuration. The TI+, SS+ and H+ estimators recover estimates under 3 percent error and supply realistic uncertainties with as few as six temperatures. In the HD 20794 case study, reddemcee reproduces literature model rankings and yields tighter yet consistent planetary parameters compared with dynesty, with evidence errors that track run-to-run dispersion. By unifying fast ladder adaptation with reliable evidence estimators, reddemcee delivers strong throughput and accurate evidence estimates, often matching, and occasionally surpassing, dynamic nested sampling, while preserving the rich posterior information which makes MCMC indispensable for modern Bayesian inference.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员