Model degrees of freedom ($\df$) is a fundamental concept in statistics because it quantifies the flexibility of a fitting procedure and is indispensable in model selection. The $\df$ is often intuitively equated with the number of independent variables in the fitting procedure. But for adaptive regressions that perform variable selection (e.g., the best subset regressions), the model $\df$ is larger than the number of selected variables. The excess part has been defined as the \emph{search degrees of freedom} ($\sdf$) to account for model selection. However, this definition is limited since it does not consider fitting procedures in augmented space, such as splines and regression trees; and it does not use the same fitting procedure for $\sdf$ and $\df$. For example, the lasso's $\sdf$ is defined through the \emph{relaxed} lasso's $\df$ instead of the lasso's $\df$. Here we propose a \emph{modified search degrees of freedom} ($\msdf$) to directly account for the cost of searching in the original or augmented space. Since many fitting procedures can be characterized by a linear operator, we define the search cost as the effort to determine such a linear operator. When we construct a linear operator for the lasso via the iterative ridge regression, $\msdf$ offers a new perspective for its search cost. For some complex procedures such as the multivariate adaptive regression splines (MARS), the search cost needs to be pre-determined to serve as a tuning parameter for the procedure itself, but it might be inaccurate. To investigate the inaccurate pre-determined search cost, we develop two concepts, \emph{nominal} $\df$ and \emph{actual} $\df$, and formulate a property named \emph{self-consistency} when there is no gap between the \emph{nominal} $\df$ and the \emph{actual} $\df$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员