The growing dependence on eTextbooks and Massive Open Online Courses (MOOCs) has led to an increase in the amount of students' learning data. By carefully analyzing this data, educators can identify difficult exercises, and evaluate the quality of the exercises when teaching a particular topic. In this study, an analysis of log data from the semester usage of the OpenDSA eTextbook was offered to identify the most difficult data structure course exercises and to evaluate the quality of the course exercises. Our study is based on analyzing students' responses to the course exercises. We applied item response theory (IRT) analysis and a latent trait mode (LTM) to identify the most difficult exercises .To evaluate the quality of the course exercises we applied IRT theory. Our findings showed that the exercises that related to algorithm analysis topics represented the most difficult exercises, and there existing six exercises were classified as poor exercises which could be improved or need some attention.


翻译:由于日益依赖电子教科书和大规模开放在线课程(MOOC),学生学习数据的数量有所增加。通过仔细分析这些数据,教育者可以确定困难的练习,并在教授特定主题时评估练习的质量。在这项研究中,对OpenDSA eTextbook学期使用的日志数据进行了分析,以确定最困难的数据结构课程练习和评估课程练习的质量。我们的研究以分析学生对课程练习的反应为基础。我们应用了项目反应理论(IRT)分析和潜在特质模式(LTM)来确定最困难的练习。我们运用了项目反应理论(IRT)来评估我们应用光学理论进行的课程练习的质量。我们的研究结果表明,与算法分析专题有关的练习代表了最困难的练习,而现有的六项练习被归类为可改进或需要关注的贫弱练习。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员