Ransomware has become a critical threat to cybersecurity due to its rapid evolution, the necessity for early detection, and growing diversity, posing significant challenges to traditional detection methods. While AI-based approaches had been proposed by prior works to assist ransomware detection, existing methods suffer from three major limitations, ad-hoc feature dependencies, delayed response, and limited adaptability to unseen variants. In this paper, we propose a framework that integrates self-supervised contrastive learning with neural architecture search (NAS) to address these challenges. Specifically, this paper offers three important contributions. (1) We design a contrastive learning framework that incorporates hardware performance counters (HPC) to analyze the runtime behavior of target ransomware. (2) We introduce a customized loss function that encourages early-stage detection of malicious activity, and significantly reduces the detection latency. (3) We deploy a neural architecture search (NAS) framework to automatically construct adaptive model architectures, allowing the detector to flexibly align with unseen ransomware variants. Experimental results show that our proposed method achieves significant improvements in both detection accuracy (up to 16.1%) and response time (up to 6x) compared to existing approaches while maintaining robustness under evasive attacks.
翻译:暂无翻译