Gaussian double Markovian models consist of covariance matrices constrained by a pair of graphs specifying zeros simultaneously in the covariance matrix and its inverse. We study the semi-algebraic geometry of these models, in particular their dimension, smoothness and connectedness. Results on their vanishing ideals and conditional independence ideals are also included, and we put them into the general framework of conditional independence models. We end with several open questions and conjectures.


翻译:Gausian 双倍的Markovian 模型包括共变矩阵,由一对图表限制,在共变矩阵中同时指定零及其反向。我们研究了这些模型的半代数几何结构,特别是其尺寸、平稳和关联性。这些模型的消失理想和有条件独立理想的结果也被包括在内,我们将其纳入有条件独立模型的总框架。我们最后提出几个开放的问题和推测。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员