Human cognition has a ``large-scale first'' cognitive mechanism, therefore possesses adaptive multi-granularity description capabilities. This results in computational characteristics such as efficiency, robustness, and interpretability. Although most existing artificial intelligence learning methods have certain multi-granularity features, they do not fully align with the ``large-scale first'' cognitive mechanism. Multi-granularity granular-ball computing is an important model method developed in recent years. This method can use granular-balls of different sizes to adaptively represent and cover the sample space, and perform learning based on granular-balls. Since the number of coarse-grained "granular-ball" is smaller than the number of sample points, granular-ball computing is more efficient; the coarse-grained characteristics of granular-balls are less likely to be affected by fine-grained sample points, making them more robust; the multi-granularity structure of granular-balls can produce topological structures and coarse-grained descriptions, providing natural interpretability. Granular-ball computing has now been effectively extended to various fields of artificial intelligence, developing theoretical methods such as granular-ball classifiers, granular-ball clustering methods, granular-ball neural networks, granular-ball rough sets, and granular-ball evolutionary computation, significantly improving the efficiency, noise robustness, and interpretability of existing methods. It has good innovation, practicality, and development potential. This article provides a systematic introduction to these methods and analyzes the main problems currently faced by granular-ball computing, discussing both the primary applicable scenarios for granular-ball computing and offering references and suggestions for future researchers to improve this theory.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员