We present near-optimal algorithms for detecting small vertex cuts in the CONGEST model of distributed computing. Despite extensive research in this area, our understanding of the vertex connectivity of a graph is still incomplete, especially in the distributed setting. To this date, all distributed algorithms for detecting cut vertices suffer from an inherent dependency in the maximum degree of the graph, $\Delta$. Hence, in particular, there is no truly sub-linear time algorithm for this problem, not even for detecting a single cut vertex. We take a new algorithmic approach for vertex connectivity which allows us to bypass the existing $\Delta$ barrier. As a warm-up to our approach, we show a simple $\widetilde{O}(D)$-round randomized algorithm for computing all cut vertices in a $D$-diameter $n$-vertex graph. This improves upon the $O(D+\Delta/\log n)$-round algorithm of [Pritchard and Thurimella, ICALP 2008]. Our key technical contribution is an $\widetilde{O}(D)$-round randomized algorithm for computing all cut pairs in the graph, improving upon the state-of-the-art $O(\Delta \cdot D)^4$-round algorithm by [Parter, DISC '19]. Note that even for the considerably simpler setting of edge cuts, currently $\widetilde{O}(D)$-round algorithms are known only for detecting pairs of cut edges. Our approach is based on employing the well-known linear graph sketching technique [Ahn, Guha and McGregor, SODA 2012] along with the heavy-light tree decomposition of [Sleator and Tarjan, STOC 1981]. Combining this with a careful characterization of the survivable subgraphs, allows us to determine the connectivity of $G \setminus \{x,y\}$ for every pair $x,y \in V$, using $\widetilde{O}(D)$-rounds. We believe that the tools provided in this paper are useful for omitting the $\Delta$-dependency even for larger cut values.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月9日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员