This paper presents a novel approach to functional principal component analysis (FPCA) in Bayes spaces in the setting where densities are the object of analysis, but only few individual samples from each density are observed. We use the observed data directly to account for all sources of uncertainty, instead of relying on prior estimation of the underlying densities in a two-step approach, which can be inaccurate if small or heterogeneous numbers of samples per density are available. To account for the constrained nature of densities, we base our approach on Bayes spaces, which extend the Aitchison geometry for compositional data to density functions. For modeling, we exploit the isometric isomorphism between the Bayes space and the $\mathbb{L}^2$ subspace $\mathbb{L}_0^2$ with integration-to-zero constraint through the centered log-ratio transformation. As only discrete draws from each density are observed, we treat the underlying functional densities as latent variables within a maximum likelihood framework and employ a Monte Carlo Expectation Maximization (MCEM) algorithm for model estimation. Resulting estimates are useful for exploratory analyses of density data, for dimension reduction in subsequent analyses, as well as for improved preprocessing of sparsely sampled density data compared to existing methods. The proposed method is applied to analyze the distribution of maximum daily temperatures in Berlin during the summer months for the last 70 years, as well as the distribution of rental prices in the districts of Munich.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员