Graph contrastive learning (GCL) has recently achieved substantial advancements. Existing GCL approaches compare two different ``views'' of the same graph in order to learn node/graph representations. The underlying assumption of these studies is that the graph augmentation strategy is capable of generating several different graph views such that the graph views are structurally different but semantically similar to the original graphs, and thus the ground-truth labels of the original and augmented graph/nodes can be regarded identical in contrastive learning. However, we observe that this assumption does not always hold. For instance, the deletion of a super-node within a social network can exert a substantial influence on the partitioning of communities for other nodes. Similarly, any perturbation to nodes or edges in a molecular graph will change the labels of the graph. Therefore, we believe that augmenting the graph, accompanied by an adaptation of the labels used for the contrastive loss, will facilitate the encoder to learn a better representation. Based on this idea, we propose ID-MixGCL, which allows the simultaneous interpolation of input nodes and corresponding identity labels to obtain soft-confidence samples, with a controllable degree of change, leading to the capture of fine-grained representations from self-supervised training on unlabeled graphs. Experimental results demonstrate that ID-MixGCL improves performance on graph classification and node classification tasks, as demonstrated by significant improvements on the Cora, IMDB-B, IMDB-M, and PROTEINS datasets compared to state-of-the-art techniques, by 3-29% absolute points.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员